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Abstract— In the past decade, Robotic-Assisted Surgery 

(RAS) has become a widely accepted technique as an 

alternative to traditional open surgery procedures. The 

best robotic assistant system should combine both human 

and robot capabilities under the human control. As a 

matter of fact robot should collaborate with surgeons in a 

natural and autonomous way, thus requiring less of the 

surgeons’ attention. In this survey, we provide a 

comprehensive and structured review of the robotic-

assisted surgery and autonomous camera movement for 

RAS operation. We also discuss several topics, including 

but not limited to task and gesture recognition, that are 

closely related to robotic-assisted surgery automation 

and illustrate several successful applications in various 

real-world application domains. We hope that this paper 

will provide a more thorough understanding of the recent 

advances in camera automation in RSA and offer some 

future research directions.  

Keywords— Robotic-assisted surgery, autonomous, 

camera movement, task and gesture recognition. 

 

I. INTRODUCTION 

The operating room is a main unit in a hospital where 

surgical operations are performed. It is a challenging 

work environment that requires intense cooperation and 

coordination between a wide range of people and 

departments [1]. Surgery is continuously subject to 

technological and medical innovations, illustrated by the 

accelerated development and introduction of new imaging 

technologies, advanced surgical tools, navigation and 

patient monitoring systems [2]. The purpose of these 

advances is to improve patient treatment while they 

transform complicity to daily routine [3]. The ultimate 

goal of RMIS is to program the surgical robot to perform 

certain difficult or complex surgery in an autonomous 

manner. However, there is no technical roadmap to a fully 

autonomous surgical system at the present time [4], [5]. 

Surgical procedures are commonly categorized by 

urgency, type of procedure, body system involved, special 

instrumentation and degree of invasiveness. At a low 

degree of invasiveness we have Minimally Invasive 

Surgery (MIS), which involves a small outer incision to 

insert miniaturized instruments and remote control 

manipulation of instruments with indirect observation of 

the surgical field through a camera (e.g. an endoscope or 

laparoscope), and is carried out through the skin or 

through a body cavity or anatomical opening. In contrast, 

an open surgical procedure or laparotomy requires a large 

incision to access the area of interest. In MIS surgeries, 

instead of making incisions, or straight-line cuts on the 

body, small cuts are made through with the surgical 

instruments. This minimizes both the bleeding that the 

patient undergoes and the scarring that occurs afterwards. 

By use of MIS, a patient may require only a small 

bandage on the incision, rather than multiple stitches or 

staples to close a large incision. These usually results in 

less infection, a quicker recovery time and shorter 

hospital stays, or allow outpatient treatment [4].  

In the age of technology and introducing robots which has 

their influence all over our life, surgical area is not an 

exception. Minimally invasive surgery can be done either 

manually or using a robotic system. Robotic surgery, 

computer-assisted surgery, and robotically-assisted 

surgery are terms for technological developments that use 

robotic systems to aid in surgical procedures. Minimally 

invasive robotic surgery provides additional advantages 

over conventional laparoscopic surgery for surgical 

operations, including an increase in dexterity [5]–[7] and 

precision [8].  

Current RAS systems operate in a master-slave mode, 

relying exclusively on direct surgeon input [8]. For 

example, camera controlling in current RAS platforms is 

an additional task under direct control of the surgeon. In 

the current FDA-approved system, da Vinci surgical 

platform (Intuitive Surgical, Sunnyvale, CA, USA) [12], 

many interface parameters are set once and remain at the 

same level throughout the operation while different 

surgical tasks and motions may require different camera 

behaviors [13]. In robotic assisted surgery, instead of 

directly moving the instruments, the surgeon uses one of 

two methods to control the instruments; either a direct 

tele-manipulator or through computer control [9]. A tele-

manipulator is a remote manipulator that allows the 

surgeon to perform the normal movements associated 

with the surgery while the robotic arms carry out those 

movements using end-effectors and manipulators to 

perform the actual surgery on the patient. In computer 

controlled systems the surgeon uses a computer to control 
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the robotic arms and its end-effectors, though these 

systems can also still use tele-manipulator for their input. 

One advantage of using the computerized method is that 

the surgeon does not have to be physically present. 

One form of robot used is the remote control of robotic 

functions referred to as teleoperated robots. Teleoperated 

robots are controlled remotely by a human being and the 

remote control signals can be sent through a wire, a local 

wireless system, over the Internet or by satellite. 

Teleoperated robots are probably the most common type 

of medical robot today. These robots are typically 

controlled by a surgeon or doctor and allow him to 

perform various tasks and treatments that he would not 

normally be able to do.  

Some advanced systems, not only have internal cameras, 

but can utilize more scanning technologies like MRI to 

allow the surgeon to get a real-time view of exactly where 

in the body the instruments are. This allows the surgeon 

to have a high level of control over exactly where he/she 

is directing the instruments. Some examples of surgical 

robots include the Neuromate stereotactic robot 

(Renishaw Inc.) for assisting in neurological surgeries, the 

da Vinci (Intuitive Surgical Inc., CA, USA) and the Zeus 

robotic surgical system (computer Motion Inc., Goleta, 

CA, USA). As an example the da Vinci Surgical System 

introduced in 1999 is becoming a standard in the field of 

minimally invasive surgery. Some advantages of this 

system are: better visualization, improved control and 

reduction in surgeon fatigue [10]. Surgical robotic enables 

the surgeon to operate in a tele-operation mode with or 

without force feedback using a master/slave system 

configuration [11]. In this mode of operation, 

visualization is obtained from either an external camera or 

an endoscopic camera.  

Task analysis is the analysis of how a task is 

accomplished, including a detailed description of both 

manual and mental activities. Task analysis emerged from 

research in applied behavior analysis and still has 

considerable research in that area [12]. The importance of 

using a standard task analysis method is that it provides a 

reproducible framework for breaking down a process 

following a structured technique. This enables developing 

a shared understanding or framework for a task, and 

communicates analysis results in a reproducible and 

widely understood manner in the industrial engineering 

and ergonomics communities.  

 
Fig. 1: Illustration of robotic surgery platform 

From a task analysis, a vocabulary can be drawn to 

describe an entire process, ensuring that all involved 

personnel are employing the same vocabulary and 

interpretation of each task and subtask definitions. Task 

analysis provides a representation of the operations that 

are required to accomplish a goal. This is especially 

critical when a designer aims to change or enhance a 

procedure, product, or system. Without a thorough 

mapping of an objective and its subtasks, it can be 

difficult to anticipate the influences or effects that a 

change may have on a system [12], [13]. It is, however, 

quite clear that to develop any automatic control system, a 

more detailed comprehension of the surgical procedures is 

needed [14].  

 

II. LITREATURE REVIEW 

As the camera positioning problem is highly multi-

disciplinary, we decided to present the different related 

areas. We first briefly present literature addressing 

gesture recognition and segmentation, with a focus on 

minimally invasive surgery and surgeon gesture 

classification based on task analysis. We then focus on 

camera positioning and zooming level during 

laparoscopic surgery. 

2.1 Surgical task recognition 

Recognition of surgical procedure from different 

granularity level become one of the recent interest of 

researchers [14]. The most focus is on phase recognitions 

and different paper use different methods to recognize 

surgery phases [14]. Forestier et. al. [15] used dynamic 

time warping to classify surgical process. Lange et. al. 

[16] did phase recognition in an operating room using 

sensor technology. Workflow and activity modeling have 

been worked [17] in order to monitor surgical procedures. 

With all these systems, information gathered incorporates 

end-effector data to some extent. Whether information is 

gathered from magnetic motion tracking of a hand 

holding manual MIS instruments, or the end-effector 
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trajectories are encoded from the da Vinci Application 

Programming Interface, all data is collect from end-

effector. Although there are several advantages using end-

effector information but there are some limitation as well. 

The good point is that it helps reduce the effects of other 

factors including fatigue that can result in added hand 

tremors, effects of motion scales, etc. However, pervious 

work successfully demonstrated that a system could be 

used to identify surgical gestures with great accuracy; a 

lack of variability presented some question as to the 

robustness of the system. The limited number of gestures 

identified in their study does not accommodate for noise 

that may stem from a mistake or surgery deviations.  If, 

for instance, a surgeon makes a poor stitch and must 

correct it by undoing it, the classification system would 

certainly misclassify the task for lack of correct options to 

choose from. On the other hand, the major weakness of 

the approaches discussed above is not relying on a 

structured decomposition of the task. To make a 

classification system more robust, Golenberg et al. [12] 

developed Hierarchical Task Analysis of a robotically 

assisted four-throw suturing task and they presents a 

classification system that automatically and accurately 

identifies  24 surgeon subtasks from library with accuracy 

of 94.56% which is based on rudimentary hand 

movements. The importance of using a structured task 

analysis method is that it enables us to have a 

reproducible framework which provides consistency and 

can be generalized to be applied in other platforms. Using 

a structured approach also makes data more acceptable 

and interpretable since the creation of a gesture 

breakdown would follow guidelines and rules. 

Additionally, a thorough task analysis could help ensure 

that a robust system could be less brittle to less common 

gestures occurring during surgery deviations, errors, and 

error recovery.  

In one hand, the feasibility of current robotic surgery 

systems to record quantitative motion and video data 

motivates the development of descriptive mathematical 

models to recognize and analyze surgical tasks. On the 

other hand, recent advances in machine learning research 

for uncovering concealed patterns in huge data sets, like 

kinematic and video data, offer a possibility to better 

understand surgical procedures from a system point of 

view. Therefore, distance-based time series classification 

framework for task recognition has been developed [18].  

2.2 Surgical gesture recognition and segmentation 

Gesture recognition is a topic in computer science and 

language technology with the goal of interpreting human 

gestures using mathematical algorithms. Human gesture 

recognition is a large research domain that has been 

studied widely in the last decades. The trend is highly 

motivated by the wide variety of applications concerned 

with understanding human gesture such as human-

machine interaction and medical monitoring. Gesture 

recognition enables humans to communicate with the 

machine and interact naturally without any mechanical 

devices. Several methods have been used for gesture 

recognition such as template-matching [19], dictionary 

lookup [20], statistical matching [21], [22], linguistic 

matching [23], neural network [24], and ad hoc methods. 

The key problem in gesture recognition is how to make 

gestures understood by computers for example how we 

can make computer understand hand or head gesture. For 

the hand gesture recognition, the approaches present can 

be mainly divided into “Glove-Based” and “Vision-

Based” approaches. The gloved based methods use sensor 

devices to capture hand and finger motions into multi-

parametric data. However, the devices are quite expensive 

and cumbersome to the users [25]. In contrast, the vision-

based methods require only a camera [26] in order to 

realize natural interaction between humans and computers 

and there is no need for any extra devices. Many studies 

have be done on the area of vision-based hand gesture 

recognition for human computer interaction, 

consolidating the various available approaches, pointing 

out their general advantages and disadvantages [27], [28]. 

In the area of surgery, significant research has been 

conducted over the past ten years for gesture recognition 

of surgeon. They have been assessed in many studies by 

either tracking the surgeon’s body motion in the operation 

room [29] or hand motion while performing a specific 

surgical task [30], [31] and [11]. The Imperial College 

Surgical Assessment Device (ICSAD) system tracks the 

surgeon’s hand motions during surgery using 

electromagnetic markers [31]. In related work, [32] 

focuses on the analysis of kinematic parameters of motion 

including translation and rotation of both the tool and 

camera. 

Several research groups have examined movement 

characteristics directly, seeking low-level signal 

processing features that can be used to automatically 

differentiate surgeons into different skill levels [33]. Lin 

et al. [30] used a neural network modeling approach to 

classify signals recorded on the da Vinci surgical robot 

into eight surgeon gestures which shows below: 

1) Reach for needle 

2) Position needle 

3) Insert and push needle through tissue 

4) Move to middle with needle (left hand) 

5) Move to middle with needle (right hand) 

6) Pull suture with left hand 

7) Pull suture with right hand 

8) Orient needle with both hands 

The extension of [30] is Reiley et al.’s [34] work that also 

used the da Vinci, but with a larger participant pool. They 
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used eleven surgical gestures, adding three gestures to 

Lin’s vocabulary; right hand assisting left while pulling 

suture, loosen up more suture, and end trial. These 

additional gestures were added by necessity from their 

surgery observations.   

In manual minimally invasive surgery, the signals are 

often recorded through magnetic trackers or color 

markers. Cristancho [35] used a Polhemus 3SPACE 

Fastrak 6-dof electromagnetic system to track 

conventional manual laparoscopic tools and used 

Principal Components Analysis (PCA) to determine the 

main contributors to overall task variability. Richards et. 

al. [36] applied force and torque sensors to manual 

laparoscopic tools and found a significant difference in 

the force and torque signatures of basic movements 

between novice and expert surgeons. With the advent of 

new technology for capturing data, more sophisticated 

machine learning method has been developed [37], [38]. 

2.3 Camera movement and positioning 

Visualization of the surgical field is vital to have a 

successful operation in both open and laparoscopic 

operations. Whereas during open procedures surgeons 

control visualization directly by their own eye movements 

and tissue manipulation, visualization during laparoscopy 

relies heavily on an assistant who navigate the 

laparoscope. Among a number of differences between 

open and laparoscopic surgery, such as fulcrum effect or 

tactile feedback, there is a disturbance between surgeon’s 

hands and eyes by interposition of a camera, which moves 

independently of the surgeon.  

 

 
Fig. 2: Camera arm of robotic surgery device 

 

The camera is sometimes held by a medical student or 

junior resident, who may be unfamiliar with the surgical 

procedure, may stand in an uncomfortable position, or 

become fatigued or distracted. This results in the camera 

rotating away from the horizon and/or inadvertent drifting 

away from the surgical field with increased rates of 

surgical errors [39]. In fact, surgical errors leading to 

injuries mostly because of misperception, rather than lack 

of knowledge or judgment [40]. Mechanical camera 

holders, passive or robotic, may provide surgeons with a 

more stable image and enable them to control their own 

view direction [41]. 

To improve the current mode of laparoscopic surgery, 

many mechanical scope positioning systems have been 

proposed [42]. The general idea is to have a robot holding 

the scope and responding to the positioning commands 

given by the surgeon through a speech interface system, a 

hand-held controller or a foot pedal, or other interface 

mechanisms. In this regard ‘choreographed’ scope 

maneuvering capability in laparoscopy was developed 

with active vision guidance [43]. 

To free the surgeon from the task of controlling the view 

and to automatically offer an optimal and stable view 

during laparoscopic surgery, several automatic camera 

positioning systems have been devised. These systems 

visually extract the shape and/or position of the surgical 

instrument from the laparoscopic images in real time, and 

automatically manipulate the laparoscope to center the tip 

of the instrument in the displayed image. In a 

laparoscopic image, these systems are based on the simple 

idea that the surgeon’s region of interest is corresponding 

to the projected position of the surgical tool end part. 

Besides centering on the most interesting area, there is an 

additional and important factor that defines a good image 

of the surgical scene that corresponds to the depth of 

insertion of the laparoscope along its longitudinal axis. 

The pioneering studies of fully automatic camera 

positioning systems defined the zooming ratio as a 

“uniform” function of the estimated distance between the 

tip of the tool and the laparoscope [44] or the area ratio 

between the visible tool and the whole image [45]. 

Although this method is entirely possible to remove 

surgeon task controlling the camera but it does not 

provide specific view that the surgeon is considering, due 

to the fact that the ratio of camera zooming is widely 

different during operative. The best zooming ratio 

depends on both the surgical procedure/phase and the 

habits/preferences of the operating surgeon. For this 

reason, most of the instrument tracking systems recently 

developed [46] and [47] have abandoned the idea of 

systematic control of zooming parameters; instead, the 

surgeon is required to define the parameters 

preoperatively or adjust them intra-operatively through 

conventional human-machine interfaces, which again 

means an extra control burden for the surgeon.  

To overcome this problem, [48] first investigated how the 

camera assistant decides the zooming ratio of 

laparoscopic images by fully analyzing the positional 

relationship between the laparoscope and the surgical 

instrument during laparoscopic surgery. They extracted 

the zooming behavior and implemented it in a robotic 
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laparoscope positioner that has been developed. As a 

result, the zooming behavior of their robotic system 

became very similar to that of the human camera 

assistant. It was found that the proposed zooming motion 

in the robotic system can be suitable for fast and compact 

operations during laparoscopic surgery.  

As previous researches show, having an accurate view for 

surgeon during laparoscopic surgery is very important but 

unfortunately there is less attention to this fact. Although 

compare to manually control of camera, robotic system 

improve the quality of picture during surgery in terms of 

positioning and zooming but deep study should have be 

done in this area.  

 

III. FUTURE DIRECTIONS 

As described in pervious section, the use of laparoscopic 

surgery has increased rapidly during the past two decades 

due to the fact that it is much less traumatic than regular 

surgery, which result in less postoperative pain and 

shorter recovery time after surgery. During laparoscopic 

surgery, endoscopic instruments are passed through small 

incisions on the abdominal wall, to reach the surgical site 

within the patient’s abdomen. Special camera is attached 

to a long stem laparoscopic lens to provide an inside view 

of the surgical site and allows the surgeon to explore the 

intra-abdominal organs and structures.  

In conventional laparoscopic surgery, both hands of the 

surgeon are engaged with surgical instruments, so the 

laparoscopic camera is handled by an assistant who is 

responsible for all camera controlling such as holding and 

maneuvering the laparoscope following surgeon needs. It 

is obvious that this cooperation between camera controller 

and surgeon requires a high degree of coordination, which 

is not as simple we might think to achieve and maintain 

during the entire procedure due to the long duration of 

surgery. There have been efforts to facilitate camera 

manipulation tasks during laparoscopic surgery 

procedures by employing robotic systems. The major 

impact of these robots in laparoscopic surgery is to reduce 

the need for assistive staff, to provide a larger space for 

surgeon maneuvers and also to provide direct control over 

the laparoscopic camera with high stability and 

geometrical accuracy and no fatigue and inattention. The 

surgeon controls the motion of the endoscope using a 

human–machine interface, e.g. a joystick, foot pedal, 

voice or tracking surgeon head movements. 

With all these development in the laparoscopic surgery, it 

is still an open area for research to find a way to predict 

surgeon view and camera positioning and zooming ratio 

during surgery and in order to do so we should have 

generalized identification of surgeon gesture using task 

analysis. The gesture classes we are focusing on are reach 

for needle, position needle, insert and push needle 

through tissue, move to middle with needle both hands, 

pull suture with right or left hand and orient needle with 

both hands. One important direction for this research are 

is developing a quantitative model can predict camera 

positioning and zooming ratio based on surgeon gestures 

validated through task analysis methods. Answering this 

question requires an exhaustive knowledge within 

multidisciplinary fields including knowledge about the 

surgery tasks, gesture recognition and camera positioning 

and zooming ratio. So in order to find an optimal camera 

mode for fundamentals of laparoscopic surgery (FLS) 

different methods are going to use that discuss in next 

chapter.  

As described before, in conventional laparoscopic 

surgery, a human assistant controls the laparoscopic 

image by directing the laparoscope on the operative field, 

following the instructions of the surgeon. This task 

requires active communication between the surgeon and 

the assistant, which result in arising confusion or physical 

space conflicts. Because the surgeon must focus on 

directing the assistant, he or she is distracted from actual 

operation. Furthermore, human camera control may result 

in not having optimal image due to tremor, off-center drift 

or the loss of horizontal orientation and therefore frequent 

correction is required. Moreover, in almost all 

laparoscopic surgery, images are highly magnified so 

slight hand trembling induces annoying jitter in the video 

display. Consequently, a waste of operator effort and a 

risk to the patient both result.  

On the other hand, it is possible to give the surgeon direct 

control of his/her visual feedback, eliminating the 

assistant control. The procedure can thus be performed 

faster and with greater ease. However, giving the surgeon 

direct control has the undesired side effect that the 

surgeon is completely being distracted to maneuver the 

scope. Using robotic camera assistant in laparoscopic 

surgery has proven to be beneficial in this case. This 

mode of operation improves the visual feedback and 

camera control to the surgeon.  

Altogether, current positioners rely completely on the 

surgeon’s interactive commands, even within robotic 

assistants, and lack the intelligence to automate the 

camera control. The question arise here is “Can we 

anticipate the surgeon’s viewing need to position the 

scope without the surgeon’s intervention using task 

analysis method?” To address this question, we should 

explore two different questions: 

1. How can we predict next surgeon gesture having 

previous gesture using dynamic real time data 

and task analysis method? 

2. How can camera position and zooming level of a 

surgery be recognized using task analysis 

method? 
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To answer both questions, first we should have a deep 

knowledge about tasks and sub-tasks during surgery. For 

this purpose first we limit ourselves to suturing task, one 

of the important and complex surgical tasks, and then try 

to generalize our model to other tasks such as cutting or 

placement and securing of ligating loop. Also another 

advantage of choosing suturing procedure is that we are 

able to anticipate camera exact position and zooming 

level because the scope aiming and movements are 

repetitive and follow a fixed pattern and it is zooming in 

when the surgeon is tying a knot and zooming out when 

the surgeon is pulling on the suture. Though, the general 

question above will change to this specific question: 

“How can we find the exact time when the surgeon is 

tying a knot to zooming in or pulling on the suture to 

zoom out?” Although we could have an overall 

anticipation based on the suturing structural procedure but 

a precise prediction of next step camera positioning and 

zooming is desired during the dynamic atmosphere of 

surgery procedure that may vary from surgeon to surgeon. 

In current laparoscopic surgery, the vision of the 

operating surgeon usually depends on the camera assistant 

responsible for guiding the laparoscope. The assistant 

holds the laparoscope for the surgeon and positions the 

scope according to the surgeon’s instructions. Commands 

are often interpreted and it causes this method become 

frustrating and inefficient for the surgeon. Also, the scope 

is sometimes aimed incorrectly and vibrates or drifts 

because of the assistant, resulting in suboptimal and 

unstable view. The robotic technologies, specifically, the 

development of robotic laparoscope positioning systems 

is a major step toward solving this problem.  

One important difference between robotic-assisted and 

manual laparoscopic surgery is that the control of the 

endoscope transfers to the surgeon. In manual 

laparoscopic surgery, another surgeon, resident or staff 

person is responsible for this role.  Although the control 

of the camera eliminates the need for other assistant 

during procedure but giving the control to the surgeon is 

adding an additional task to an already overloaded 

surgeon. For this reason, allowing a robot to 

automatically control the zoom based on the surgeon’s 

task has a great opportunity to contribute to a surgeon’s 

performance. Ellis et al. [49], [50] demonstrated that the 

zoom level had a significant effect on surgeon 

performance. Removing the task of camera control from 

the surgeon would relieve the surgeon of a task and 

ensure quick and responsive camera control.  

 

IV. CONCLUSION 

In this paper, we report the recent development on the 

research of camera positioning in robotic assisted surgery 

with focus on various computational analytic techniques. 

As the camera positioning problem is highly multi-

disciplinary, we presented the different related areas such 

as addressing gesture recognition and segmentation, with 

a focus on robotic assisted surgery and surgeon gesture 

classification based on task analysis. We then focus on 

camera positioning and zooming level during 

laparoscopic surgery. Various method on algorithms on 

this are surveyed in this paper. Overall, autonomous 

camera movement and positioning for robotic assisted 

surgery is still in its infancy. It involves the cooperation 

of many disciplines. In order to understand this better, not 

only for machines, but also for humans, substantial 

research efforts in computer vision, machine learning and 

psycholinguistics will be needed. 
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